The Camera for the Vera Rubin Observatory- Science and Guider/Wavefront Rafts

Pierre Antilogus,¹ Kirk T. Arndt,² Steve Bellavia,³ Andrew Bradshaw,⁴
Alfred Dellapenna,³ Peter Doherty,⁵ Walter R. Innes,⁶
Claire Juramy-Gilles,¹ Ivan V. Kotov,³ Craig S. Lage,⁴
Philip J. Marshall,⁶ Andrei Nomerotski,³ Martin Nordby,⁷
Paul O'Connor,³ John Oliver,^{5,8} Stephen Plate,³ Vincent J. Riot,⁹
Steve Ritz,¹⁰ Aaron Roodman,⁷ Matthew R. Rumore,³
Christopher W. Stubbs,^{5,8} J. Anthony Tyson,⁴ William Wahl,³
Brian Walsh,³ Richard Van Berg,^{7,11} and Kurt Vetter³

¹Laboratoire de Physique Nucléaire et des Hautes Energies, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, 4 place Jussieu, 75005 Paris, France ²Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK

³Brookhaven National Laboratory, Upton, NY 11973, USA

⁴ Physics Department, University of California, One Shields Avenue, Davis, CA 95616, USA
 ⁵ Department of Physics, Harvard University, 17 Oxford St., Cambridge MA 02138, USA
 ⁶ Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94025, USA

⁷SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA

⁸Department of Astronomy, Center for Astrophysics, Harvard University, 60 Garden St.,

Cambridge, MA 02138, USA

⁹Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
 ¹⁰Santa Cruz Institute for Particle Physics and Physics Department, University of California–Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA

 $^{11}Department$ of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6396, USA

(Dated: January 27, 2020)

ABSTRACT

The instrument for the Vera Rubin Observatory (previously known as LSST) comprises a modular array of CCDs. The main imaging array contains 3.17 Gpix spanning 9.6 square degrees that is sampled at 0.2 arcsec/pixel. The imaging array is implemented as a modular assembly of 21 independent "science rafts", each containing a 3×3 mosaic of 4096×4096 pixel deep-depletion CCDs. The four corners of the camera contain "corner rafts" that contain a 4096×4096 pixel guide sensors and a pair of 2048×4096 pixel wavefront sensors that are positioned on either side of focus to obtain wavefront information. Each CCD has 16 output amplifiers. Subregions of the guiders are read out at a frame rate of 10 Hz while the shutter is open. The wavefront and science raft CCDs contain a total of 3088 channels that are read out in parallel, allowing the entire camera to be digitized in 2 seconds while meeting the read noise requirements of the system. The camera electronics reside within the vac-

uum system, and include a custom integrated circuit that performs correlated double sampling, providing signals to a bank of 18 bit high-precision analog to digital converters. The f/1.2 beam places stringent requirements on the planarity and flatness of the imaging array. This paper describes the design and implementation of the VRO camera, and initial performance characteristics.

1. TO DO

Maybe add sensor section?
Add Intro
Fix Tables
Finalize Authors
decide where sensor description goes.
Finalize figures (is there a standard?)
Add citations as appropriate
Add Acknowledgments